Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(51): 32750-32756, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288706

RESUMO

Cell division is often regulated by extracellular signaling networks to ensure correct patterning during development. In Arabidopsis, the SHORT-ROOT (SHR)/SCARECROW (SCR) transcription factor dimer activates CYCLIND6;1 (CYCD6;1) to drive formative divisions during root ground tissue development. Here, we show plasma-membrane-localized BARELY ANY MERISTEM1/2 (BAM1/2) family receptor kinases are required for SHR-dependent formative divisions and CYCD6;1 expression, but not SHR-dependent ground tissue specification. Root-enriched CLE ligands bind the BAM1 extracellular domain and are necessary and sufficient to activate SHR-mediated divisions and CYCD6;1 expression. Correspondingly, BAM-CLE signaling contributes to the restriction of formative divisions to the distal root region. Additionally, genetic analysis reveals that BAM-CLE and SHR converge to regulate additional cell divisions outside of the ground tissues. Our work identifies an extracellular signaling pathway regulating formative root divisions and provides a framework to explore this pathway in patterning and evolution.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Raízes de Plantas/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Vegetais/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Dev Cell ; 52(2): 223-235.e5, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31866202

RESUMO

Cell polarity is a key feature in the development of multicellular organisms. For instance, asymmetrically localized plasma-membrane-integral PIN-FORMED (PIN) proteins direct transcellular fluxes of the phytohormone auxin that govern plant development. Fine-tuned auxin flux is important for root protophloem sieve element differentiation and requires the interacting plasma-membrane-associated BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX) proteins. We observed "donut-like" polar PIN localization in developing sieve elements that depends on complementary, "muffin-like" polar localization of BRX and PAX. Plasma membrane association and polarity of PAX, and indirectly BRX, largely depends on phosphatidylinositol-4,5-bisphosphate. Consistently, mutants in phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) display protophloem differentiation defects similar to brx mutants. The same PIP5Ks are in complex with BRX and display "muffin-like" polar localization. Our data suggest that the BRX-PAX module recruits PIP5Ks to reinforce PAX polarity and thereby the polarity of all three proteins, which is required to maintain a local PIN minimum.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Polaridade Celular , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Mutação , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
3.
Development ; 146(23)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31826870

RESUMO

Methylation of lysine 4 in histone 3 (H3K4) is a post-translational modification that promotes gene expression. H3K4 methylation can be reversed by specific demethylases with an enzymatic Jumonji C domain. In Arabidopsis thaliana, H3K4-specific JUMONJI (JMJ) proteins distinguish themselves by the association with an F/Y-rich (FYR) domain. Here, we report that jmj14 mutations partially suppress reduced root meristem size and growth vigor of brevis radix (brx) mutants. Similar to its close homologs, JMJ15, JMJ16 and JMJ18, the JMJ14 promoter confers expression in mature root vasculature. Yet, unlike jmj14, neither jmj16 nor jmj18 mutation markedly suppresses brx phenotypes. Domain-swapping experiments suggest that the specificity of JMJ14 function resides in the FYR domain. Despite JMJ14 promoter activity in the mature vasculature, jmj14 mutation affects root meristem size. However, JMJ14 protein is observed throughout the meristem, suggesting that the JMJ14 transcript region contributes substantially to the spatial aspect of JMJ14 expression. In summary, our data reveal a role for JMJ14 in root growth in sensitized genetic backgrounds that depends on its FYR domain and regulatory input from the JMJ14 cistron.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Histona Desmetilases com o Domínio Jumonji/metabolismo , Meristema/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Histona Desmetilases com o Domínio Jumonji/genética , Meristema/genética
4.
Nat Plants ; 3(12): 926-929, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29209081

RESUMO

Because plants do not possess a defined germline, deleterious somatic mutations can be passed to gametes, and a large number of cell divisions separating zygote from gamete formation may lead to many mutations in long-lived plants. We sequenced the genome of two terminal branches of a 234-year-old oak tree and found several fixed somatic single-nucleotide variants whose sequential appearance in the tree could be traced along nested sectors of younger branches. Our data suggest that stem cells of shoot meristems in trees are robustly protected from the accumulation of mutations.


Assuntos
Genes de Plantas , Mutação , Quercus/genética , Árvores/genética , Longevidade/genética , Meristema/citologia , Meristema/genética , Taxa de Mutação , Brotos de Planta/citologia , Brotos de Planta/genética , Polimorfismo de Nucleotídeo Único , Quercus/citologia , Árvores/citologia
5.
Plant Cell Physiol ; 58(9): 1519-1527, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922745

RESUMO

Plant organ size is sensitive to environmental conditions, but is also limited by hardwired genetic constraints. In Arabidopsis, a few organ size regulators have been identified. Among them, the BIG BROTHER (BB) gene has a prominent role in the determination of flower organ and leaf size. BB loss-of-function mutations result in a prolonged proliferation phase during leaf(-like) organ formation, and consequently larger leaves, petals and sepals. Whether BB has a similar role in root growth is unknown. Here we describe a novel bb allele which carries a P235L point mutation in the BB RING finger domain. This allele behaves similarly to described bb loss-of-function alleles and displays increased root meristem size due to a higher number of dividing, meristematic cells. In contrast, mature cell length is unaffected. The increased meristematic activity does not, however, translate into overall enhanced root elongation, possibly because bb mutation also results in an increased number of cell files in the vascular cylinder. These extra formative divisions might offset any growth acceleration by extra meristematic divisions. Thus, although BB dampens root cell proliferation, the consequences on macroscopic root growth are minor. However, bb mutation accelerates overall root growth when introduced into sensitized backgrounds. For example, it partially rescues the short root phenotypes of the brevis radix and octopus mutants, but does not complement their phloem differentiation or transport defects. In summary, we provide evidence that BB acts conceptually similarly in leaf(-like) organs and the primary root, and uncouples cell proliferation from elongation in the root meristem.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proliferação de Células , Meristema/citologia , Mutação/genética , Fenótipo , Supressão Genética , Ubiquitina-Proteína Ligases/química
6.
EMBO Rep ; 18(8): 1367-1381, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28607033

RESUMO

Arabidopsis root development is orchestrated by signaling pathways that consist of different CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands and their cognate CLAVATA (CLV) and BARELY ANY MERISTEM (BAM) receptors. How and where different CLE peptides trigger specific morphological or physiological changes in the root is poorly understood. Here, we report that the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) are necessary to fully sense root-active CLE peptides. We uncover BAM3 as the CLE45 receptor in the root and biochemically map its peptide binding surface. In contrast to other plant peptide receptors, we found no evidence that SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) proteins act as co-receptor kinases in CLE45 perception. CRN stabilizes BAM3 expression and thus is required for BAM3-mediated CLE45 signaling. Moreover, protophloem-specific CRN expression complements resistance of the crn mutant to root-active CLE peptides, suggesting that protophloem is their principal site of action. Our work defines a genetic framework for dissecting CLE peptide signaling and CLV/BAM receptor activation in the root.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Membrana/metabolismo , Floema/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Peptídeos/genética , Peptídeos/metabolismo , Floema/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais
7.
J Exp Bot ; 66(17): 5367-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26136270

RESUMO

In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Peptídeos/metabolismo , Alinhamento de Sequência
8.
Proc Natl Acad Sci U S A ; 111(31): 11551-6, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049386

RESUMO

The phloem performs essential systemic functions in tracheophytes, yet little is known about its molecular genetic specification. Here we show that application of the peptide ligand CLAVATA3/embryo surrounding region 45 (CLE45) specifically inhibits specification of protophloem in Arabidopsis roots by locking the sieve element precursor cell in its preceding developmental state. CLE45 treatment, as well as viable transgenic expression of a weak CLE45(G6T) variant, interferes not only with commitment to sieve element fate but also with the formative sieve element precursor cell division that creates protophloem and metaphloem cell files. However, the absence of this division appears to be a secondary effect of discontinuous sieve element files and subsequent systemically reduced auxin signaling in the root meristem. In the absence of the formative sieve element precursor cell division, metaphloem identity is seemingly adopted by the normally procambial cell file instead, pointing to possibly independent positional cues for metaphloem formation. The protophloem formation and differentiation defects in brevis radix (brx) and octopus (ops) mutants are similar to those observed in transgenic seedlings with increased CLE45 activity and can be rescued by loss of function of a putative CLE45 receptor, barely any meristem 3 (BAM3). Conversely, a dominant gain-of-function ops allele or mild OPS dosage increase suppresses brx defects and confers CLE45 resistance. Thus, our data suggest that delicate quantitative interplay between the opposing activities of BAM3-mediated CLE45 signals and OPS-dependent signals determines cellular commitment to protophloem sieve element fate, with OPS acting as a positive, quantitative master regulator of phloem fate.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Floema/crescimento & desenvolvimento , Floema/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana/metabolismo , Mutação/genética , Floema/citologia , Floema/efeitos dos fármacos , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...